学校主页 加入收藏 English
当前位置: 首页 >> 学术科研 >> 学术讲座 学术讲座
凯发平台双周学术报告会(二十二)
  点击次数: 次 发布时间👨:2018-11-21   编辑:统计数学K8凯发

 

时间:20181128(星期三)1400-1500

地点🧏🏻:K8凯发南路校区,学术会堂603

 

报告题目:MixedFinite Element Methods of Elasticity Problems

 

报告人⚂:胡俊、北京大学数学科K8凯发

 

报告摘要:The problemsthat are most frequently solved in scientific and engineering computing mayprobably be the elasticity equations. The finite element method (FEM) wasinvented in analyzing the stress of the elastic structures in the 1950s. Themixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields adirect stress approximation since it takes both the stress and displacement asan independent variable. The mixed FEM can be free of locking for nearlyincompressible materials, and be applied to plastic materials, and approximateboth the equilibrium and traction boundary conditions more accurate. However,the symmetry of the stress plus the stability conditions make the design of themixed FEM for elasticity surprisingly hard. In fact, ``Four decades ofsearching for mixed finite elements for elasticity beginning in the 1960s didnot yield any stable elements with polynomial shape functions" [D. N.Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies(2002)]. Since the 1960s, many mathematicians have worked on this problem butcompromised to weakly symmetric elements, or composite elements. In 2002, usingthe elasticity complexes, Arnold and Winther designed the first family ofsymmetric mixed elements with polynomial shape functions on triangular grids in2D.

 

The talkpresents a new framework to design and analyze the mixed FEM of elasticityproblems, which yields optimal symmetric mixed FEMs. In addition, thoseelements are very easy to implement since their basis functions, based on thoseof the scalar Lagrange elements, can been explicitly written down by hand. Themain ingredients of this framework are a structure of the discrete stress spaceon both simplicial and product grids, two basic algebraic results, and atwo-step stability analysis method.

 

 

报告人简介🧚🏼:Jun Hu is  a Professorof Mathematics at Peking University. His mainresearch interest is in finite element methods of partial differentialequations, including mixed  finite element methods of problems arisingfrom mechanics,  finite element methods of partial differential equationseigenvalue problems and high order prolems, adaptive finite element methods,and nonlinear approximations.  In particular, he (with his collaorators)solved a difficult problem: constructions of stable mixedfinite elements of elasticity  problems within the Hellinger-Reissnerformulation. He has published over 60 publications in peer-reviewed journals,and serves as President of the Beijing Society of ComputationalMathematics,  one of managing editors of  journal Advances in AppliedMathematics and Mechanics,  the editor of  three journals:  ComputationalMethods in Applied Mathematics, Computer and Mathematics withApplications,  and Journal of Computational Mathematics.  He is therecipient of   National Science Fund for Distinguished Young Scholarof PR China, 2016,  the first Youth Innovation prize of China Society forComputational Mathematics in 2015  and the National Excellent DoctoralDissertation of PR China in 2006, and a former Alexander von Humboldt ResearchFellow of Alexander von Humboldt Foundation of Germany in 2004.

 

 

本次活动受北京K8凯发平台娱乐代理官方网站2018专题学术讲座项目资助👃🏼。

学术科研

          版权所有:凯发平台  
          地址📍💄:北京市昌平区沙河高教园北京K8凯发平台娱乐代理官方网站沙河校区1号K8凯发楼   邮政编码:102206   电 话:(010)61776184    
          凯发平台-凯发-凯发娱乐-北京K8凯发平台娱乐代理官方网站    
         

K8凯发公众号

凯发平台专业提供📋:凯发平台凯发娱乐🪮、凯发代理等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流,凯发平台欢迎您。 凯发平台官网xml地图
凯发平台 凯发平台 凯发平台 凯发平台 凯发平台 凯发平台 凯发平台 凯发平台 凯发平台 凯发平台